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[1] A new multivariate pseudodeterministic receptor model (PDRM), combining mass
balance and Gaussian plume dispersion equations, was developed to exploit highly time-
resolved ambient measurements of SO2 and particulate pollutants influencing air quality at
a site in Sydney, Florida, during the Tampa Bay Regional Aerosol Chemistry Experiment
(BRACE) in May 2002. The PDRM explicitly exploits knowledge of the number and
locations of major stationary sources, source and transport wind directions, stack gas
emission parameters, and meteorological plume dispersion parameters during sample
collections to constrain solutions for individual sources. Model outputs include average
emission rates and time-resolved ambient concentrations for each of the measured species
and time-resolved meteorological dispersion factors for each of the sources. The model
was applied to ambient Federal Reference Method SO2 and 30-min elemental
measurements during an 8.5-hour period when winds swept a 70� sector containing six
large stationary sources. Agreement between predicted and observed ambient SO2

concentrations was extraordinarily good: The correlation coefficient (R2) was 0.97, their
ratio was 1.00 ± 0.18, and predicted SO2 emission rates for each of four large utility
sources lie within 8% of their average continuous emission monitor values. Mean
fractional bias, normalized mean square error, and the fractions of the predictions within a
factor of 2 of the observed values are �2.7, 0.9, and 94%, respectively. For elemental
markers of coal-fired (As and Se) and oil-fired (Ni) power plant emissions the average
ratio of predicted and observed concentrations was 1.02 ± 0.18 for As, 0.96 ± 0.17 for Se,
and 0.99 ± 0.41 for Ni, indicating that the six sources located in the wind sector between
approximately 200� and 260� well accounted for background-corrected concentrations
measured at the sampling site. Model results were relatively insensitive to the choice of
upper bound used to constrain solutions.
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1. Introduction

[2] Source apportionment, i.e., quantitative determination
of the contributions of pollutants from their sources to
ambient atmospheric levels, is necessary for developing
emission control strategies that effectively reduce exposures
and health risks, and prevent degradation of air quality
[Gordon, 1988]. Source attribution may be accomplished
with either source- or receptor-based models, however,

applications of the former are often limited because of the
lack of emission rate data. In the latter, source contributions
are determined using observations at sampling (i.e., recep-
tor) sites. Receptor models are typically of three types, i.e.,
those that make use of no information other than ambient
meteorological and concentration measurements (e.g., factor
analysis (FA) methods such as principle component analysis
(PCA)); those that require a single unique tracer for each
source (multilinear regression. MLR); and those requiring
detailed information on the relative abundances of pollu-
tants emitted from each source (i.e., source ‘‘profiles,’’ e.g.,
chemical mass balance (CMB)). Of these, CMB has been
the most robust, as it traditionally makes use of more
information about the sources than do the other methods.
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Additionally, traditional FA methods suffer from ‘‘rotational
ambiguities’’ resulting from transformation of abstract
eigenvectors into concrete source compositions [Henry,
1987], and they cannot resolve sources whose ambient
concentrations become correlated by virtue of spatial/mete-
orological colinearity. More recently, advanced FA models
seek to remove rotational ambiguity by estimating solutions
to the inherent mass balance equations by least squares
minimization, e.g., positive matrix factorization (PMF)
[Paatero, 1997] and Constrained Physical Receptor Model
(COPREM) [Wahlin, 2003]. The most advanced models
limit the universe of possible solutions by employing non-
negativity criteria [Paatero, 1997] and/or constraints on
stoichiometry and range of source composition variables
(UNMIX) [Henry, 2000; Kim and Henry, 2000; Henry and
Norris, 2002]. Unlike PMF, UNMIX estimates the number of
factors and the composition and contributions of these factors
to the particulate loadings [Henry et al., 1999; Kim and
Henry, 2000]. Also, both source compositions and contribu-
tions are constrained to positive values. Moreover, both
COPREM and Multilinear Engine (ME) [Paatero, 1999]
allow flexible input of ‘‘profiles’’ for one or more sources
when known, while allowing solutions for the remaining
unknown ‘‘profiles.’’ Despite these advances, none of these
models truly makes use of much commonly available, but
important information, e.g., numbers and locations of known
sources and their relationships with wind angle.
[3] Until recently, most of the data obtained for receptor

modeling has been derived from samples collected over
timescales far longer than those for changes in source
strengths and important meteorological parameters, e.g.,
wind direction and mixing height. The accompanying
homogenization of source signals by this practice severely
reduces the resolving power achievable with FA methods
[Lioy et al., 1989]. At 2-hour resolution, Rheingrover and
Gordon [1988] demonstrated that plumes of stationary
sources in St. Louis are readily observed as excursions in
time series profiles of the concentrations of the various
marker elements. More recently, Kidwell and Ondov [2001,
2004] have described a system for measuring elemental
constituents at 30-min intervals, allowing for improved
source resolution under more variable wind conditions
[Ondov et al., 2003]. Such data contain substantial infor-
mation on the locations of specific sources. Aside from
correlating peaks with wind direction, more distant sources
produce temporal excursions of longer duration than do
nearby sources. These differences are revealed when winds
shift direction. Despite advances, information such as this,
which is provided by highly time-resolved data, has not
been fully exploited in receptor modeling.
[4] Gaussian plume-based dispersion models [Pasquill,

1961; Gifford, 1961; Schwede and Paumier, 1987; Hanna
et al., 2003] have been applied widely for estimating mean
pollutant concentrations resulting from point source
releases because of their simplicity [U.S. Environmental
Protection Agency (U.S. EPA), 1980]. These models incor-
porate off-axis decay of concentrations from their maxima
along the plume centerline and are commonly used to
evaluate potential effects of primary emissions from
industrial stacks. Much earlier, both Cooper [1982] and
Yamartino [1982] described hybrid receptor models in
which measured concentrations were reconciled against

the products of emission rates and dispersion factors
determined from a Gaussian plume dispersion model. These
attempts met with limited success, owing in part from the
lack of highly time-resolved data for many species, but
largely because of errors in the Gaussian plume model.
[5] Herein, we describe a new pseudodeterministic mul-

tivariate hybrid receptor model (PDRM), wherein the
Gaussian plume model is used to constrain solutions to
the mass balance receptor equation. The purpose is to
exploit directionality and plume dispersion information
inherent in highly time-resolved ambient concentration data
now available to resolve the contributions of primary
pollutants emitted from stationary sources. Unlike traditional
receptor models, the PDRM exploits knowledge of the
number and locations of major stationary sources, source
and transport wind directions and distances, stack gas
emission parameters, and meteorological plume dispersion
during sample collections. Furthermore, emission rates are
predicted for specific, individual sources.
[6] The model and its application to elemental composi-

tion measurements made at 30-min intervals with the
University of Maryland Semicontinuous Elements in Aero-
sol Sampler (SEAS) in Sydney, Florida, during the Bay
Regional Aerosol Chemistry Experiment (BRACE) are
described below.

2. Experimental Data

2.1. Study Area and Modeling Period

[7] As shown in Figure 1, the Sydney site is located at the
intersection of Dover and Sydney roads near Valrico,
Florida. The site is surrounded by major freeways such as
I-4 (due north, 6 km), I-75 (due south, 9.5 km), and
Highway 60 (due south, 2 km), and several anthropogenic
industrial sources. Our modeling was performed on ambient
data collected between 1200 and 2100 local time (LT) on
13 May 2002, during which time wind angles (measured
from true north) ranged from 200�–270� and hourly aver-
aged wind speeds ranged from 1 to 4 m/s (see Figure 2). This
sector contains four large electric utility coal- and oil-fired
power plants, specifically, the Manatee plant operated by
Florida Power and Light (FPL), Tampa Electric Company’s
(TECO) Big Bend and FJ Gannon plants, and Progress
Energy’s (PE, formally Florida Power’s) PT Bartow plant;
and two industrial sources (Cargill Fertilizer and Gulf Coast
Recycling). Fuel type, source-receptor distances and station
angles (measured at Sydney from due north), and emissions
data for PM and SO2 are listed in Table 1. As indicated, the
Manatee oil-fired power plant is located at an angle (station
angle) of 196�, 41 km away from the site. The Big Bend and
Gannon coal-fired power plants were located at respective
station angles and distances of 220� and 251� and 25 and
20 km (note that the FJ Gannon plant no longer exists: it
has been replaced with a natural gas-fired combined cycle
power plant and renamed as Bayside). Their generating
load capacities were �1800 and 1200 MW, respectively.
The stacks at the Big Bend plant, however, are equipped
with both an electrostatic precipitator (ESP) and a wet
(forced oxidation lime) scrubbers; hence SO2 emissions
from Gannon are larger despite its smaller size. The
Gannon power plant is equipped with ESPs and SO2

emissions are controlled through the use of low-sulfur coal.
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Bartow is an oil-fired power plant and is located 38 km
upwind at 253�. Its SO2 emissions are about two thirds those
of Manatee and less than one half those from Gannon.
Particle emissions from one of three stacks of Bartow is
controlled by an ESP. The Cargill fertilizer plant burns sulfur
to make sulfuric acid and also burns natural gas in its other
heating operations. It emits �3500 t of SO2 annually. The
Gulf Coast lead-battery-recycling plant burns coke in its
blast furnace and natural gas in its other melting operations.
The recycling plant emits �500 t of SO2 annually.
[8] Hourly SO2 emission rates for the four utility power

plants were obtained from the EPA’s Clean Air Markets
Emissions Data and Compliance Report web page (available
at http://www.epa.gov/airmarkets/emissions/index.html) and
are plotted in Figure 3. Annual SO2 emission rate estimates
for the Cargill and Gulf Coast plants were provided by the
Florida Department of Environmental Protection. As indi-
cated in Figure 3, SO2 emission rates from each of the
stacks were fairly constant over the study period except for
Manatee. For example, SO2 emission rates for Gannon were
in the range 9100–9800 kg/h with a mean of 9400 kg/h.
This is the optimum condition for estimating the emission
rates of SO2 from the plant because, as described below, the
emission rate term in the governing mass balance equation

(equation (1)) is assumed to be constant over the modeling
period. However, for the Manatee plant the SO2 release
rate was substantially more variable, ranging from 3900 to
6200 kg/h with an average of 4600 kg/h.

Figure 1. Area map showing the Sydney sampling site and nearby air emission sources. See color
version of this figure at back of this issue.

Figure 2. Profiles of wind speed and wind direction on
13 May 2002.
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2.2. Meteorological Measurements

[9] Two-minute averaged surface meteorological obser-
vations were available from a National Oceanic and Atmo-
spheric Administration (NOAA) vertical profiling site at
Sydney (NOAA Environmental Technology Laboratory,
inactive site archives, edited data, available at http://
www.etl.noaa.gov/et7/data/). Thirty-minute averages of the
NOAA wind speed and direction measurements made
during the study period on 13 May are shown in Figure 2.
In the predawn hours, the temperature and relative humidity
averaged 20�C and 98%, respectively, with light winds from
the southeast under stable atmospheric conditions. As the
sun rose on the horizon, the winds shifted clockwise and
developed into a southwesterly flow off of Tampa Bay. The
midday high temperature and low relative humidity aver-
aged 33�C and 37%, respectively, with strong convective
mixing. The mixing height reached an estimated 2400 m by
midafternoon under neutral atmospheric conditions and
with more westerly winds at 3–4 m/s off of Tampa Bay.
Westerly winds continued through the evening, with lower
wind speeds and stable atmospheric conditions developing
within an hour after sunset. Sunrise was at 0541 eastern
standard time (EST), and sunset was at 0711 EST. No
precipitation was recorded across the Tampa Bay area.
[10] In addition to surface wind observations available at

the Sydney site, SSESCO, Inc. (St. Paul, Minnesota)
produced CALMET 5.22 model (Level 020828) input files
for a 600 � 900 km modeling domain over peninsular
Florida on a 10-km grid scale with 12 vertical layers, as part
of the Bay Regional Atmospheric Chemistry Experiment
(BRACE) effort. They began with the three-dimensional
meteorological fields from an archived NOAA North Amer-
ican Rapid Update Cycle (RUC2) prognostic model, which
assimilates surface and upper air observations, satellite and
radar data into a weather forecast. The RUC2 model was
run with a 1-hour resolution for 40 km grid cells and 40
vertical layers and was used as a first guess for a mesoscale
data assimilation using the Advanced Regional Prediction
System (ARPS) Data Assimilation System (ADAS) and
METAR observations. The resulting mesoscale temperature,
pressure, wind and humidity fields were checked by
SSESCO with an objective data analysis technique and
used in CALMET as a first-guess wind field and as virtual
surface and upper air observations spaced across the mod-
eling domain for the CALMET objective analysis proce-
dure. The CALMET model includes a diagnostic wind field
generator and a micrometeorological model for overland
and overwater boundary layers and produces, as output,

hourly winds and temperatures for a three-dimensional
modeling domain and hourly two-dimensional outputs of
mixing heights and surface characteristics [Scire et al.,
2000]. The Pasquill stability class, mixing height, friction
velocity, Monin-Obukhov length, and convective velocity
scale were obtained from the CALMET output at the geo-
coordinates of the Sydney site and used in the PDRM as
described below.

2.3. SO2 and Elemental Measurements

2.3.1. SO2

[11] Ambient SO2 mixing ratios (ppb) were measured
with a federal reference method ‘‘pulsed fluorescence ana-
lyzer’’ (PFA) at 1-min intervals during the study period.
These were converted to mg/m3 using ambient temperature
and pressure data and used to construct 30-min averages for
use in the PDRM. Examination of the SO2 data reveals that
at least three transients occurred during the study period.
The highest 30-min averaged SO2 concentration, 41.1 ppb
(106 mg/m3), was observed at 1830 LT on 13 May.
2.3.2. PM2.5 Metal Sampling and Elemental Analyses
[12] As described by Pancras [2005], ambient aerosol

collections were made at Sydney during the study period,
using the University of Maryland Semi-continuous Ele-
ments in Aerosol Sampler (SEAS). The SEAS consists of
a state-of-the-art dynamic aerosol concentrator mated to an
automated sample collector. Detailed descriptions of the
SEAS sampler have been presented elsewhere [Kidwell and
Ondov, 2001, 2004; Pancras, 2005]. Successive 30-min
samples were collected routinely from 1 to 31 May 2002,

Table 1. Emission Source Informationa

Plant Name Fuels in Use Control Technology Distance, km Station Angle, deg PM, t/yr SO2 Emission

FPL Manatee oil 41 196 9472 31,136b/1280c

TECO Big Bend coal ESP + wet scrubber 25 220 7591 12,095/303
Cargill Fertilizer sulfur/NG 20 235 288 3422/40d

TECO Gannon coal ESP 20 251 6267 49,532/2610
FPC Bartow oil 38 253 2600 23,200/1100
Gulf Coast Recycling coke/NG 15 269 26 487/25d

aDistance, distance between the source and receptor sites; station angle, angle between the receptor and source; PM,
particulate matter; ESP, electrostatic precipitator; NG, natural gas.

bMetric tons (t/yr) of SO2 emitted in 2001.
cAverage value (g/s) of SO2 continuous emission data between 1200 and 2100 LT, 13 May 2002.
dAnnual average rate of SO2 emission.

Figure 3. Actual SO2 emission rates for four power plants
in the study area.
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resulting in a total of >700 samples. A subset of these,
including 18 of those collected during the 13 May study
period, were analyzed in triplicate by simultaneous multi-
element graphite furnace atomic absorption spectroscopy
(GFAAS) with Zeeman background correction (SIMMA
6000, Perkin Elmer Corp., Danbury, Connecticut) for Al,
As, Cd, Cr, Cu, Fe, Mn, Ni, Pb, Se, and Zn. Additional
details, including quality control/quality assurance proto-
cols, are given by Pancras [2005].
[13] The PDRM is designed specifically to apportion con-

tributions from stationary sources whose plumes induce
excursions in concentrations above the background levels
induced by observed at a single receptor location. Therefore
background concentrations were evaluated and subtracted
prior to use in the PDRM. These were as follows: SO2,
0.52 mg/m3; Al, 25.0 ng/m3; As, 0.10 ng/m3; Cr, 0.13 ng/m3;
Cu, 0.45 ng/m3; Fe, 6.76 ng/m3; Mn, 0.48 ng/m3; Ni,
0.53 ng/m3;Pb, 0.37 ng/m3; Se, 0.10 ng/m3; and Zn,
1.72 ng/m3. (Background corrected concentrations for SO2

and each of the 10 elemental particle constituents are shown in
Figures 7 and 8.) When run with non-background-subtracted
data, model results were nearly identical to those obtained
using the background-subtracted data.

3. Model Description

3.1. Least Squares Model

[14] Our goal is to determine the emission rates of
species, i, from j stationary sources, using highly time-
resolved concentration measurements from the SEAS and
SO2 monitors. The basis of the model is a mass balance
equation such that the ambient contributions of each of the
sources to each species are expressed as products of
emission rates (ERi,j, g/s) and meteorological dispersion
factors (c/Qj,t, s/m

3) appropriate for each for each sampling
period, t, i.e.,

Ei½ �t¼
Xn
j¼1

ERi;j c=Qð Þj;t ð1Þ

where [Ei]t denotes the measured concentration of the
species of interest at the receptor site and ERi,j represent
averages for the period during which the samples (time
intervals) used in model were collected. To solve the model,
(c/Q)j,t are calculated for each sampling interval using a
simple Gaussian plume model,

X=Qð ÞMet
j;t ¼ 1

psyszu
exp

�1
2

y2

s2y 	 exp
�1

2
H2

s2z ð2Þ

In equation (2), c is the concentration (g/m3) of gas or
aerosols at ground level (i.e., z = 0) from a continuous

source with an effective emission height, H; Q is the
continuous mass emission rate (g/s); and u is the transport
wind speed (m/s) representing the speed of the plume over
its trajectory. Dispersion parameters, sy and sz, are the
standard deviations of the concentration distributions in the
lateral (y) and vertical (z) directions, and increase with
downwind distance from the source (x). It is assumed that
all emitted species are conserved, i.e., are neither removed
by gravitational settling, dry or wet deposition, nor by
chemical reactions.
[15] Equations (1) and (2) are those used by Yamartino

[1982], but in our implementation, equation (1) is solved
using a nonlinear least squares solver (‘‘lsqcurvefit’’) in
MATLAB (MathWoks, Inc, version 6.5) in which equation
(2) is employed to constrain equation (1). The MATLAB
program provides a solution that minimizes an object
function, FUN, which we define as follows:

FUN ¼
Xl

i¼1

Xm
t¼1

Xn
j¼1

ERi;j c=Qð Þj;t� Ei;t

� �� �2

ð3Þ

which is solved with the constraint that

LB c=Qð ÞMet
j;t 
 c=Qð Þj;t 
 UB c=Qð ÞMet

j;t ;

where LB and UB are upper and lower bounds reflecting
uncertainty in the Gaussian plume model.
[16] Input variables used in the hybrid receptor model are

as follows: (1) 30-min ambient concentrations of SO2, Al,
As, Cr, Cu, Fe, Mn, Ni, Pb, Se, and Zn, (2) derived and
measured meteorological parameters, as described below,
(3) stack data (physical stack height, stack inside diameter,
exit gas velocity, and exit gas temperature (see Table 2), and
(4) station angles for the six emission sources.
[17] Setting up constraints is essential to the hybrid

receptor model because the number of solutions for a
product of unknowns is infinite. Once configured, the
constrained model was applied to estimate the emission
rates of SO2 and elemental constituents of primary particles.
The results for SO2 are evaluated by comparison against
continuous emission monitoring data available for four of
the sources and annual emission estimates for the two
smaller sources, i.e., Cargill and Gulf Coast.
[18] Initially, solutions for (c/Q)j,t were constrained to the

range 0.1–2.0, consistently, for all six sources. This choice
was derived from information reported for an intentional
tracer study [Ondov et al., 1992] conducted at a coal-fired
power plant 20 km from an arc of samplers in Maryland, a
location for which terrain and land use are somewhat similar
to that of Tampa, in which c/Q calculated with two different
parameterizations of a Gaussian plume model differed by a
factor of 5–10. However, as discussed below, the model

Table 2. Stack Information Used in the Model

Plant Name Stack Height, m
Stack Internal
Diameter, m

Stack Exit
Temperature, K

Stack Exit
Velocity, m/s

FPL Manatee 152 7.9 436 25
TECO Big Bend 152 7.3 410 15
Cargill Fertilizer 46 2.5 345 11
TECO Gannon 96 4.5 423 23
FPC Bartow 91 3.3 408 34
Gulf Coast Recycling 46 0.9 344 17
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was also run using separate constraints for the Cargill and
Gulf coast plants, and sensitivity analyses were performed.
As described below, the former choice produced ERs that
exceeded their reported annual emission rates by factors of
>3 and >12 for Cargill and Gulf coast, respectively. These
results might well be accurate, but effective plume heights
(<100 m) for these plants are low (compared with, for
example, those for the Manatee Plant, for which the
effective plume height was 1200 m during the period of
influence at the receptor site) and dispersion of their plumes
is expected to be more affected by surface roughness
elements than those from the larger plants. For these
reasons, we applied separate LB and UB constraints for
these two sources and reran the model. Initial choices for
LB and UB for Cargill were 0.4 to 8 and 1.2 to 24 for Gulf
coast. Results for both models runs, as well as the sensitivity
analysis, are discussed below.

3.2. Gaussian Dispersion Parameters (Sy and Sz)

[19] The values of sy and sz vary with turbulence, height
above the surface, surface roughness, and downwind dis-
tance from the source and, hence, transport wind speed and
time. Herein, sy and sz were determined from correlations
developed by Draxler [1976] and Irwin [1979] as follows:

sy ¼ svtFy ð4Þ

sz ¼ swtFz ð5Þ

where sv and sw are the standard deviations of the wind
velocity in the y and z directions, respectively, t is the travel
time from the source to the location of interest, and Fy and
Fz are universal functions of parameters that specify the
characteristics of the atmospheric boundary layer. Specifi-
cally, these are friction velocity, u*; the Monin-Obukhov
length, L; the mixed layer depth, zi; the convective velocity
scale, w*; the surface roughness, zo; and the effective stack
height, z, i.e., the height of pollutant release above the
ground. Different formulae are used for different stability
classes [Draxler, 1976; Binkowski, 1979; Irwin, 1979].
Likewise, sv and sw are calculated from friction velocity
(u*) and L, using formulae appropriate for different stability
classes. Hourly values of the Pasquill stability class, zi (m),
u* (m/s), L (m) and w* (m/s), were obtained from the
CALMET model [Scire et al., 2000] output at the
geocoordinates of Sydney, Florida, as described above.
These were interpolated to produce half-hourly estimates for
use in the model. A surface roughness length of 0.25 m was
used in this analysis.

3.3. Transport Wind Velocity u

[20] The wind profile power law was used to estimate
horizontal transport speed, u, at the effective plume height,
z, given the horizontal surface wind speed, u1, at height z1
(i.e., the 10 m, meteorological tower height). The power law
equation is of the form

u ¼ u1 z=z1ð Þp ð6Þ

where p is given by equation (6) [Panofsky et al., 1960].

p ¼
fm

z
L

� �
Uk
u�

ð7Þ

where the nondimensional wind shear, fm(z/L), and the
nondimensional wind speed, Uk/u*, are universal functions;
and k is the von Karman constant, which is equal to 0.4.
Equation (5) is invalid for wind transport speeds less than
1.0 m/s. Therefore a minimum value of 1.0 m/s was used.
[21] Transport speeds calculated in this manner were

relatively constant during the 9-hour modeling period. Thus
the transport speed was calculated for each 30-min interval
and an average transport speed was used in the receptor
model. Likewise, transport time was calculated from the
average transport speed at stack height and source-to-
receptor site distance. Transport times were assumed to be
constant over the 9-hour period, despite shifts in the wind
angle, which lead to differences in x for each source.

3.4. Effective Plume Height H

[22] The plume height is used in the calculation of the
vertical term described in equation (2) and in calculating the
transport velocity, as described above. The effective stack
height is taken to be the sum of the actual stack height (hs)
and the plume rise (DH).

H ¼ hs þ DH ð8Þ

Herein, plume rise (DH) is calculated by the formulas
expressed by Briggs [1969, 1971, 1974] and U.S. EPA
[1995]. The detailed mathematical formulas can be found in
Briggs’ papers, and a brief description is given below. The
effective stack height (H) is determined for conditions at
the stack exit. If the plume is dominated by buoyancy, the
buoyancy flux parameter, Fb (m

4/s3), is given by

Fb ¼ gvsd
2
s

DT

4Ts

� 	
ð9Þ

where g is gravitational acceleration (m/s2), vs is the stack
gas exit velocity (m/s), ds is the inside stack top diameter
(m), us is mean wind speed (m/s) at stack height, DT = Ts �
Ta, Ts is the stack gas temperature (K), and Ta is the ambient
air temperature (K).
[23] The plume height (H) for unstable or neutral atmo-

spheric conditions is determined by two different flux
parameters: (1) For Fb < 55,

H ¼ hs þ 21:425
F
3=4
b

us
ð10Þ

(2) For Fb  55,

H ¼ hs þ 38:71
F
3=5
b

us
ð11Þ

The plume height (H) for stable atmospheric conditions is
given by equation (11)

H ¼ hs þ 2:60
Fb

uss

� 	1=3

ð12Þ
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If the plume is dominated by momentum, the momentum
flux parameter, Fm (m4/s3), is given by

Fm ¼ v2s d
2
s

Ta

4Ts

� 	
ð13Þ

The plume height (H) for an unstable or neutral atmospheric
condition is given by

H ¼ hs þ 3:0 ds
vs

us
ð14Þ

The plume height (H) for a stable atmospheric condition is
given by

H ¼ hs þ 1:5
Fm

us
ffiffi
s

p
� 	

ð15Þ

where s (= g(@q/@z)/Ta) is a stability parameter indicating
the potential temperature gradient with height.
[24] Emission parameters required to calculate the effec-

tive plume height (H) in the Gaussian plume dispersion
equation (2) are listed in Table 2.

3.5. Distance Between the Plume Centerline and the
Sampling Site (y)

[25] According to equation (2), the plume concentration
decays exponentially with increasing distance, y, from the
plume centerline. As illustrated in Figure 4, wherein x0 is the
plume transport distance, y is related to the deviation,
qDS, between the wind angle, qwind, and station angle,
qstation, and the source-to-sampling site distance, x, as
follows:

y ¼ sin qDS 	 x ð16Þ

qDS ¼ qstation � 180� � qwind � qEkman

where qEkman is the wind angle rotation at transport height
relative to the surface wind direction (in degrees) due to the
Ekman effect. In Figure 4, we show a station angle (251�)
corresponding to the TECO Gannon power plant. Both qwind
and qstation are measured from true north. In the model, we
used an average wind angle, computed from the 15-min
surface wind data measured at the meteorological tower,
i.e., averaged during the period of transport for each source
(case 2).

4. Results and Discussion

4.1. Volumetric Dispersion Factors (C/Q) and SO2

Emission Rates

[26] As applied to the data of 13 May, the model was
solved to obtain a set of 66 emission rates (i.e., 11 species
for each of the six sources) and for a set of 108 dispersion

Figure 4. The PDRM makes use of source angle and
distance relationships. Plume transport distance (x0) and
displacement (y) of the plume centerline from the sampling
site are shown.

Table 3. Predicted Emission Rates of SO2 and Metal Speciesa

Species Gannon Bartow Big Bend Manatee Cargill Gulf Coast

SO2 (observed)
b 2600 ± 50 1140 ± 10 300 ± 10 1360 ± 300,1110c 40d 25d

SO2 (predicted) 2590e (2510)f 1030 (1130) 320 (290) 1140 (1045) 130 (49) 340 (31)
Al 1.109 (1.000) 0.151 (0.522) 1.229 (1.131) 6.946 (7.577) 0.058 (0.204) 0.042 (0.582)
As 0.031 (0.030) 0.032 (0.032) 0.019 (0.018) 0.006 (0.001) 0.001 (0.001) 0.001 (0.004)
Cr 0.029 (0.024) 0.027 (0.022) 0.026 (0.027) 0.167 (0.226) 0.002 (0.007) 0.001 (0.011)
Cu 0.005 (0.018) 0.004 (0.015) 0.036 (0.031) 0.085 (0.117) 0.003 (0.007) 0.001 (0.014)
Fe 1.146 (1.084) 0.401 (0.534) 1.246 (1.147) 5.853 (6.725) 0.077 (0.270) 0.041 (0.520)
Mn 0.003 (0.011) 0.002 (0.010) 0.022 (0.020) 0.180 (0.214) 0.001 (0.002) 0.001 (0.011)
Ni 0.002 (0.010) 0.002 (0.011) 0.032 (0.060) 0.604 (0.650) 0.002 (0.002) 0.001 (0.007)
Pb 0.007 (0.033) 0.006 (0.028) 0.067 (0.057) 0.138 (0.166) 0.004 (0.008) 0.003 (0.035)
Se 0.032 (0.033) 0.032 (0.032) 0.002 (0.002) 0.043 (0.053) 0.001 (0.002) 0.001 (0.003)
Zn 0.018 (0.058) 0.018 (0.057) 0.113 (0.095) 0.760 (0.980) 0.005 (0.014) 0.003 (0.032)

aUnits are in g/s.
bAverage continuous emission monitor data from the stacks (1200�2100 LT, 13 May).
cAverage emission rate during period of plume influence.
dAnnual average SO2 emission data in 1998 (not CEM data).
ePredicted SO2 emission rates when all six sources identically constrained to the range 0.1–2.0 (case 1).
fValues in parentheses are predicted SO2 emission when constraints for Cargill and Gulf Coast are set to 4 and 12 times those for the base constraint set

for the other plants (case 2).
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factors (c/QPDRM; 18 for each of the six sources). Results
for both constraint strategies are listed in Table 3. The c/Q
predicted for case 2, i.e., where constraints for Cargill and
Gulf Coast are set to 4 and 12 times those for the base
constraint set for the other plants, are shown in Figure 5. In
Figure 5, the c/Q predicted by both the PDRM and
Gaussian plume model (equation (2)) for each of the six
sources are plotted as a function of time of day. As shown,
c/Q varied with each of the sources and time of day, as
winds shifted the plume toward and away from the receptor
site. The c/Qs represent factors for which multiplication by

the emission rates give ambient concentrations. For the
power plants, SO2 emissions were relatively constant
during their respective periods of influence on SO2 levels
at Sydney. Thus the values of c/Q in Figure 5 are
proportional to the induced ambient SO2 concentrations
and show when the plumes of the various stationary
sources arrived. The Gannon plant, located 20 km from
the site, had the largest SO2 emissions (Table 1) and its
plume strongly influenced the site between 1330 and
1930 LT. The plume was clearly influential on three
occasions during the study period, i.e., at 1430, 1700,

Figure 5. Comparison of dispersion factors (c/Q) calculated with the meteorological model with those
obtained from the least squares model for each of the sources for case 2, wherein constraints for Cargill
and Gulf Coast are set to 4 and 12 times those for the base constraint set for the other plants.

D07S15 PARK ET AL.: NEW MODEL FOR SOURCE APPORTIONMENT

8 of 14

D07S15



and 1830 LT. Maximum influence occurred at 1830 LT,
which precisely corresponds to the time of the maximum
SO2 concentration (106 mg/m3; see Figure 6). The profile
for the c/Qs for Bartow, located at nearly the same
station angle, but 18 km more distant than Gannon,
was very similar, but as indicated, the arrival of its plume
(approximately 1400 LT) was delayed by approximately
30 min later than that of Gannon, in good agreement with
its longer transport time (note that stack heights for the
two plants were nearly identical).
[27] For Gannon, c/Qs calculated with the meteorological

model were quite similar to, but generally about 30% greater
than, those predicted by the PDRM. For Bartow, c/Qs
predicted by the PDRM (c/QPDRM) were roughly tenfold
smaller than those for Gannon during the same periods,
indicating more substantial plume dilution, owing to the
greater distance of the former. Meteorological c/Qs, how-
ever, for Bartow were at most twofold lower than those
for Gannon, and differed less after 1800 LT. As described
above, the relative small differences in dispersion over
the additional 18 km transit probably reflects the neutral
and later stable atmospheric conditions input into the
Met model. However, the PDRM predictions are clearly
more accurate, as can be seen from Table 3, wherein
SO2 emission rates for both Gannon (2600 g/s observed,
2590 g/s predicted) and Bartow (1140 g/s observed,
1030 g/s predicted) are in excellent agreement with
those derived from the continuous emission monitor
(CEM) data. Inaccuracies in the relatively unsophisticated
Gaussian plume model used, herein, are to be expected,
especially, because it included neither terms for reflection

at the surface or at the boundary layer height. Note that
predictions made with U.S. EPA’s CALPUFF model also
suggest that the influence of Bartow on ambient SO2

concentrations at Sydney was relatively small for the
same study period (13 May), whereas that for Gannon
was much larger [Poor et al., 2003].
[28] As indicated in Figure 5, the plume from Big Bend

(station angle 220�; distance 25 km) arrived at Sydney at
approximately 1230 LT and peaked at 1300 LT, before
moving away from the site by 1400 LT. For this plant, c/
QPDRMs were larger (indicating less dilution) than c/QMets
were during the period of plume influence, i.e., the opposite
behavior as that observed for Gannon and Bartow. Presum-
ably, this is an effect of Big Bend’s much taller stack height
(150 m) for which larger dilutions are predicted by the Met
model. However, apparently, the plume was more coherent
as evidenced by the excellent agreement between SO2

emissions predicted by the PDRM and the CEM-derived
value (i.e., 320 and 300, respectively; see Table 3). For the
more distant Manatee plant (196�, 41 km), the c/QPDRM

and c/QMet were nearly identical. The mean SO2 emission
rate predicted with the former (1140 g/s predicted, 1360 g/s
observed) based on the average of the 18 ERj,t and the
average CEM-derived rates, i.e., both averaged over the
entire 9-hour study period) is about 20% lower than
observed. However, inspection of Figures 3 and 5 suggests
that during the time of plume influence (i.e., somewhat
before 1200–1300 LT) the average observed SO2 emission
rate was indeed less than the study period average, which
was affected by an increase later in the day, but after the
plume had moved away from the site. Calculated on the
basis of the period of plume influence, the observed SO2

emission rate is 1110 g/s, i.e., within 3% of the PDRM
prediction of 1140 g/s (see Table 3). Clearly, averaging
times for these comparisons need to be considered in the
model, but the model is, again, shown to be extraordinarily
accurate.
[29] For the two smaller plants, Cargill and Gulf Coast

(235� and 269�; 20 and 15 km, respectively), c/QPDRM also
exceeded c/QMet values. This was especially true for Gulf
Coast. As mentioned above, annual SO2 emission rates for
these sources were typically more than tenfold less than
those for the four utility plants. As indicated in Table 3, the
predicted average SO2 emission rates (130 and 340 g/s,
respectively) were threefold and twelvefold larger than their
respective annual averages (40 and 25 g/s) obtained using
emission factors (U.S. EPA 1998 emission inventory data),
but the validity of these obtained emission rates cannot
strictly be evaluated for these plants as only their annual
SO2 emission rates were available. Note that when c/Q for
these plants were constrained separately as described above,
far better agreement between their predicted (49 and 31 g/s,
respectively) and reported annual emission rates was
achieved, and that for the 4 large power plants also
improved somewhat (see Table 3).
[30] Despite its small SO2 emission rate, Gulf Coast is a

major Pb emission source. The plant recycles Pb-acid
batteries into Pb ingots. Aluminum or other metals (i.e.,
Sb or As) are sometimes added to the ingots. During this
study period, the occurrence of highly elevated fine-particle
Al concentrations (>70 ng/m3) together with Pb is, there-
fore, indicative of emissions from the Gulf Coast plant.

Figure 6. Comparison of observed and PDRM-predicted
ambient SO2 concentrations.
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Figure 7. Observed and PDRM-predicted concentrations of elemental species.
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Comparison of Figures 5 and 7 shows that Al excursions are
better correlated with periods when the plume from Gulf
Coast influenced Sydney than any of the power plants,
including Gannon and Bartow, for which Al-containing fly
ash emissions might be expected. Moreover, the ambient
concentration profiles for Pb and Al are reasonably well fit
by the six-source model. Taken together, all of this
information suggests that c/QPDRM predictions using the
modified constraints are, in fact, reasonably accurate. A
more detailed evaluation of PDRM performance is given
below.

4.2. Elemental Constituents

[31] The order of appearance of the plumes from the six
sources is easily seen from their ambient concentration time
series plots shown in Figure 7. The concentration of Ni, an
important tracer of fuel oil combustion, is first seen peaking
(�5.5 ng/m3) between 1200 and 1300 LT, in agreement with
the maximum c/QPDMR for Manatee, a large OFPP, and the
second largest SO2 emitter of the six sources used in the
model. Very minor Ni excursions are indicated at 1430,
1630, and 1800 LT in accordance with c/QPDMR maxima
for Bartow (Figure 5), which also operated oil-fired units, at
precisely those times.
[32] The dispersion plot (Figure 5) shows that Big

Bend’s, a large but well-controlled (ESP and wet lime
scrubber) influence was confined to a brief period centered
about 1300 LT. As shown in Figure 6 and discussed above,
it had only a small effect on SO2 concentrations observed
at Sydney and a negligible effect on that of Se, a nearly
unique tracer of primary particles from coal combustion.
Its small influence on Se concentrations is consistent with
its control technology, as wet scrubbers are known to also
scrub gas-phase Se [Ondov et al., 1979], in which sub-
stantial fractions of the Se emission often resides [Ondov
et al., 1989]. Arsenic, coemitted with Se during coal
combustion, however, did peak at 1300 LT, in accordance
with the arrival of the Big Bend plume at Sydney. As
shown in Figure 7, Se peaked at 1400, 1530, and 1830 LT,
in accordance with plumes from coal-fired boilers at
Gannon and Bartow. Arsenic concentrations were likewise

elevated at 1530, 1630, and 1830–1900 LT, in good
agreement with the arrival of plumes from the Gannon
and Bartow plants. The ratio of As to Se in airsheds
influenced by coal combustion is �1. Between 1200 and
2030 LT this ratio ranged from 0.70 to 2.00 with a mean of
1.23 ± 0.43, i.e., in agreement with a coal combustion
source.
[33] Peaks in ambient Al, Fe, Zn, and Cu were also

evident at 1630 LT as well as 1830 LT, but at reduced size.
In general, concentration time series are more difficult to
interpret for these elements, as there are many sources and
analytical and sampling errors tended to be larger, especially,
for Al and Fe, when their concentrations are dominated by
dust particles, which can be trapped in the solenoid value in
the SEAS or be excluded from the small aliquots of sample
actually analyzed. The latter process may account for over-
prediction of Al and Fe between 1800 and 1930 LT. Peaks
in the time series plots for Zn, and to a lesser extent, Cu and
Al, occur at 1230 LT, along with Ni, suggesting influence
from Manatee.
[34] Copper is clearly underpredicted at 1230 LT and

more so at 1400 LT, possibly as a result of an additional
source. Likewise, Al was underpredicted at 1430 LT, and Zn
was substantially underpredicted at 1630 LT, i.e., when
Gannon and Bartow plumes were influencing the site. The
underprediction of Zn may be due to the influence of a
small incinerator, about 10 km from the site at a station
angle of 250�. The plume from this incinerator was clearly
observed on 17 May.
[35] Lead peaks were observed at 1300 LT, in accordance

with the arrival of the Big Bend plume and, later, between
1450 and 1530 LT, when maximum influence from the Gulf
coast plume was predicted by the PDRM. Lead concentra-
tions also peaked at 1630 LT, and again at 1800–1900 LT, in
accordance with arrival of the Gulf Coast plume.

4.3. Performance Measures

[36] Receptor model performance is often discussed in
terms of ratios of predicted and observed values. However,
several additional measures have been used to evaluate air
quality models [Londergan et al., 1983; Londergan and

Table 4. Performance Statistics Between Observed and Predicted Concentrations for SO2 and Metal Speciesa

Units SO2
b Al As Cr Cu Fe Mn Ni Pb Se Zn

Observed (average) ng/m3 57.17 47.13 0.78 1.15 1.28 47.61 0.82 1.23 2.64 0.84 3.56
Predicted (average) ng/m3 57.26 49.75 0.77 1.12 1.16 49.89 0.82 1.09 2.39 0.76 3.32
Ratio (average) – 1.00 1.22 1.02 1.01 1.04 0.95 1.07 0.99 1.00 0.96 0.99
MB ng/m3 �0.08 �2.62 0.01 0.03 0.12 �2.28 0.00 0.13 0.25 0.08 0.25
MNB % �6.5 �22.4 �2.1 �1.0 �4.4 �10.2 �3.3 1.1 �0.25 3.3 0.5
MFB % �2.7 �12.6 �0.6 2.0 3.5 �5.4 0.0 7.5 9.0 5.1 7.0
MAGE ng/m3 4.74 11.7 0.10 0.24 0.33 10.1 0.16 0.47 0.82 0.14 1.1
MNGE % 17.6 37.0 15.4 21.1 30.2 25.3 20.9 28.3 28.1 13.4 32.4
RMSE ng/m3 6.24 14.77 0.12 0.29 0.53 12.74 0.19 0.88 1.06 0.23 1.32
NMSE % 0.9 8.4 2.0 6.2 17.8 6.4 5.0 35.6 15.9 5.8 12.7
Fa2 % 94 83 100 100 93 94 100 93 93 100 100
CC – 0.98 0.73 0.96 0.52 0.51 0.65 0.82 0.72 0.61 0.94 0.51

aMB, mean bias (= (1/N)
PN
i¼1

(Oi � Pi)); MNB, mean normalized bias (= (1/N)
PN
i¼1

[(Oi � Pi)/Oi]); MFB, mean fractional bias (= (2/N)
PN
i¼1

[(Oi � Pi)/

(Oi + Pi)]); MAGE, mean absolute gross error (= (1/N)
PN
i¼1

jOi � Pij); MNGE, mean normalized gross error (= (1/N)
PN
i¼1

[jOi � Pij/Oi]); RMSE, root-

mean-square error (= [(1/N)
PN
i¼1

(Oi � Pi)
2]1/2); NMSE, normalized mean square error (= [(1/N)

PN
i¼1

(Oi � Pi)
2]/[(1/N)

PN
i¼1

(OiPi)]); Fa2, fractions of

the predictions within a factor of 2 of the observed values; and CC, coefficient of correlation (R).
bSO2 concentration variables are given in mg/m3.
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Wackter, 1984; Hanna, 1988; Kumar et al., 1993; Patel
and Kumar, 1998; Kumar et al., 1999] and are defined in
Table 3. These include measures of differences between
predicted and observed values (e.g., normalized mean
square error (NMSE) and mean fractional bias (MFB)),
correlation coefficients, and the fraction of predictions
within a factor of 2 of observations (Fa2). According to
Kumar et al. [1993], model performance is deemed accept-
able if NMSE 
 0.5, �0.5 
 MFB 
 0.5, and Fa2  0.8
(80%).
[37] Herein, the ratios of the predicted and observed

average concentration were 1.00 ± 0.18 in SO2, 1.02 ±
0.18 (0.8�1.4) for As, 0.96 ± 0.17 (0.6�1.2) for Se, and
0.99 ± 0.41 (0.6�2.2) for Ni, respectively. Highest (2.2) and
lowest (0.6) ratios in the Ni component observed between
1200 and 1300 LT time zones might be due to uncertainty
for the fluctuation in the wind angles. Residuals ranged
from �15.6 to 10.4 mg/m3 (mean bias: �0.08 mg/m3, see
Table 4) for SO2, �0.18 to 0.14 ng/m3 (mean bias:
0.01 ng/m3) for As, from �0.15 to 0.56 ng/m3 (mean
bias: 0.08 ng/m3) for Se, and from �2.0 to 2.5 ng/m3

(mean bias: 0.13 ng/m3) for Ni. As indicated in Table 4,
MNB range from �2.1% for As to 3.3% for Se. The
performance indices, NMSE, MFB, and Fa2, are also
quite reasonable for these three markers, ranging from
2.0, �0.6, and 100% for As to 35.6, 7.5, and 93% for
Ni. The mean normalized gross error (MNGE, also
defined in Table 4) ranged from 13.4% for Se to
28.3% for Ni. For the metals species showing temporal
concentration profiles similar to that of SO2, i.e., As, Se,
and Ni, the agreement between predicted and observed
concentrations was excellent, as shown in Figure 7 and
Table 4.
[38] Poorer agreement was observed for the other

elements, which as discussed above, we attribute to other
sources and, in the case of Fe and Al, sampling losses.
Another factor to consider is that source profiles and
hence emission rates for particle constituents may not be
constant in time, especially, over such short time periods,

and might change differently than those for SO2, as
particles and SO2 are subject to different control technol-
ogy. Additionally, the model results are largely driven by
the temporal SO2 concentration profiles, because SO2,
present at tens of mg/m3 levels, was the single most
abundant species. Thus even small relative differences
between calculated and observed values for SO2 represent
a large fraction of the least squares sum of the differences
(equation (3)) which is to be minimized in the model.
[39] For Al, the average ratio of predicted to observed

levels was 1.22 ± 0.50 (0.7�2.4); and 0.95 ± 0.15 (0.7�2.0)
for Fe; 1.07 ± 0.33 (0.7�1.8) for Mn; 1.04 ± 0.43 (0.4�1.9)
for Cu; 1.00 ± 0.47 (0.3�2.2) for Pb; and 0.99 ± 0.39
(0.6�1.8) for Zn. Overpredictions for crustal elements, Al
and Fe, were 50�200% between 1800 and 2000 LT for
reasons discussed above. As indicated in Table 4, MNB

Figure 8. Results of sensitivity analysis case 1: all sources constrained identically. (a) Ratios of
predicted and observed SO2 emission rates for different upper bound constraints. (b) Ratios of predicted
and observed SO2 concentrations for different constraints on the upper bound.

Figure 9. Normalized emission rate predicted as a
function of the value of the base upper bound constraint,
wherein separate constraints are applied for the Cargill and
Gulf Coast plants.
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ranged from �22.4 to 3.3% depending on the metals
species. Both errors and performance indices (NMSE,
MFB, and Fa2) associated with the model predictions are
also varied, depending upon species, but the indices are all
within the acceptable ranges.
[40] Emission rates predicted for the 10 particle constitu-

ents and for each of the six sources are also listed in Table 3.
However, to validate these results, in-stackmonitoring should
be done for at least one of the emission sources.
[41] As indicated in Figure 7, the SO2 concentration

profile predicted by the six-source model is in excellent
agreement with the observed SO2 concentrations. Regression
of observed and predicted concentrations (excluding obser-
vations for which measurement uncertainty exceeded 30%)
gave a slope of 0.965, an intercept of 0.002 (mg/m3), and
correlation coefficient (R2) of 0.969. As indicated in Table 4,
the average observed SO2 concentration (57.2 mg/m3) is
nearly identical to the predicted average (57.3 mg/m3), and
the mean normalized bias (MNB), which is sensitive to
small observed concentrations, is �6.5%. Additionally,
NMSE, MFB, and Fa2 for SO2 are 0.9, �2.7, and 94%,
respectively, which are within the acceptable ranges sug-
gested by Kumar et al. [1993]. Last, the mean normalized
gross error (MNGE), which like the MNB is sensitive to
small observed concentrations, is low (17.6%). These
performance measures suggest that the PDRM, coupled
with highly time-resolved ambient measurements, could
be effectively used as a tool to remotely monitor emission
rates of SO2, develop dispersion models, and estimate
emission rates of toxic and other noncriteria pollutants
without expensive in-stack monitoring.

4.4. Sensitivity to Constraints

[42] Two sets of sensitivity analyses were performed. The
first was conducted for the base case in which all six sources
were identically constrained and UB was varied from 1.0 to
8.0. Results are shown in Figure 8a, wherein the ratio of
predicted to observed average SO2 emission rates are
plotted against UB. In this case, results for Cargill and Gulf
Coast are not shown because CEM data are not available.
As shown in Figure 8a, there is little change in the ratio of
the observed and predicted SO2 emission rates for UBs
exceeding 2.0. Ratios for UB < 2.0 increased somewhat but
remained in the range 0.88 to1.16 depending on the source.
Clearly, larger UBs are favored. As shown in Figure 8b, the
predicted ambient SO2 concentrations are insensitive to the
choice of the UB constraint. As discussed above, there are
good reasons to expand constraints applied to the c/Q for
Cargill and Gulf Coast. In Figure 9, the effect of UB on
model results are shown for the case wherein UBs for
Cargill and Gulf Coast are set to 4 and 12 times those for
the base constraint set for the other plants. In this figure, the
predicted emission rates are normalized to those calculated
for the base constraint = 2 (i.e., for which upper bounds for
c/QPDRM are 2 � 4 = 8 and 2 � 12 = 24 for Cargill and
Gulf Coast, respectively). For values of the base constraint
>2, there is no change in the predicted values for any of the
plants. As the upper bound of the base constraint is
decreased from 2 to 1.1, predicted emissions change by
<20% for all plants except Gulf Coast. Clearly, the choice of
constraint is most sensitive for Gulf Coast, but given that
there is little change in model predictions for upper bounds

>2 � 12, and that the emission rate predicted at this upper
bound is in better agreement with the annual emission rate,
this would seem a logical choice. As noted above, con-
straining UBs for Cargill and Gulf Coast leads to better
agreement between predicted and observed values for the
larger plants (see Table 3).

5. Concluding Remarks

[43] A hybrid model, combining features of least
squares mass balance receptor and deterministic Gaussian
plume models, has been applied to highly time-resolved
ambient SO2 and primary aerosol components measured
during the BRACE to predict their contributions to
ambient levels from known stationary sources. Unlike
factor analysis and traditional chemical mass balance
models, the new model was designed to directly make
use of the numbers and locations of known sources, their
geographic relation to the receptor site, and wind direction
during sampling. Results encompass average emission
rates of primary pollutants from specific, individual
sources, meteorological dispersion factors (c/Q) for each
source, and the ambient concentrations induced at the
receptor site by the modeled sources. Emission rates
determined for individual sources can be readily tested
against in-stack measurements. Furthermore, accurate
solutions were obtained for six sources with data for only
18 observational periods. In contrast, factor analysis
models require much larger data sets, i.e., wherein, by
one estimate, the number of observations must exceed the
number of variables (elements) by 50 if stable results are
to be obtained [Thurston and Spengler, 1985].
[44] Model predictions were extraordinarily accurate for

SO2 emissions from the four sources for which accurate
emission data were available during the modeling period.
This was true even though two of the plants, Gannon and
Big Bend, lay along almost identical station angles and
are separated by a distance of only 18 km. Furthermore,
predicted concentrations for elemental constituents of
emitted particles well accounted for concentrations of
elemental constituents, especially, well-known marker
species (As, Se, and Ni). On the basis of these and other
quantitative performance measures presented above, we
conclude that the PDRM, coupled with highly time-
resolved ambient measurements, could be effectively used
as a tool to remotely monitor emission rates of SO2, develop
dispersion models, and estimate emission rates of toxic and
other noncriteria pollutants without expensive in-stack
monitoring.
[45] Clearly, the PDRM will need to be tested in more

complex emission source environments and against more
complete emission data before we can fully appreciate its
value and limitations.

[46] Acknowledgments. This work was funded in part by the Florida
Department of Environmental Protection as part of the Bay Regional
Atmospheric Chemistry Experiment (BRACE) and in part by the United
States Environmental Protection Agency through grant/cooperative agree-
ment (BSS R82806301) to University of Maryland, College Park (UMCP).
Research described in this article has not been subjected to EPA’s peer and
policy review and therefore does not necessarily reflect the views of the
Agency and no official endorsement should be inferred. Additionally, the
authors thank the BRACE team for providing ambient SO2 and meteoro-
logical data.

D07S15 PARK ET AL.: NEW MODEL FOR SOURCE APPORTIONMENT

13 of 14

D07S15



References
Binkowski, F. S. (1979), A simple semi-empirical theory for turbulence in
the atmospheric surface layer, Atmos. Environ., 13, 247–253.

Briggs, G. A. (1969), Plume rise, Crit. Rev. Ser. T/D 25075, U.S. At.
Energy Comm., Washington, D. C. (Available from Natl. Tech. Inf. Serv.,
Springfield, Va.)

Briggs, G. A. (1971), Some recent analyses of plume rise observations, in
Proceedings of the Second International Clean Air Congress, edited by
H. M. Englund and W. T. Beery, pp. 1029–1032, Elsevier, New York.

Briggs, G. A. (1974), Diffusion estimation for small emissions, in Environ-
mental Research Laboratories Air Resources Atmospheric Turbulence
and Diffusion Laboratory 1973 Annual Report, USAEC Rep. ATDL-
106, NOAA, Washington, D. C.

Cooper, D. W. (1982), Receptor-oriented source-receptor analysis, paper
presented at Specialty Conference on Receptor Models Applied to Con-
temporary Pollution Problems, Northeast Atl. Int. Sect. of the Air Pollut.
Control Assoc., Danvers, Mass., 17–20 Oct.

Draxler, R. R. (1976), Determination of atmospheric diffusion parameters,
Atmos. Environ., 10, 99–105.

Gifford, F. A. (1961), Use of routine meteorological observations for esti-
mating, atmospheric dispersion, Nucl. Safety, 2, 47–51.

Gordon, G. E. (1988), Receptor models, Environ. Sci. Technol., 22, 1132–
1142.

Hanna, S. R. (1988), Air quality model evaluation and uncertainty, JAPCA,
38, 406–412.

Hanna, S. R., R. Britter, and P. Franzese (2003), A baseline urban disper-
sion model evaluated with Salt Lake City and Los Angeles tracer data,
Atmos. Environ., 37, 5069–5082.

Henry, R. C. (1987), Current factor analysis models are ill-posed, Atmos.
Environ., 21, 1815–1820.

Henry, R. C. (2000), UNMIX theory and applications, in Final Report
of Workshop on UNMIX and PMF as Applied to PM2.5, Publ. EPA/
600/A-00/48, edited by R. D. Willis, pp. 4–6, U.S. Environ. Prot.
Agency, Washington, D. C.

Henry, R. C., and G. A. Norris (2002), EPA UNMIX 2.3 User Guide, Natl.
Exposure Res. Lab., U.S. Environ. Prot. Agency, Research Triangle Park,
N. C.

Henry, R. C., E. S. Park, and C. H. Spiegelman (1999), Comparing a new
algorithm with the classical methods for estimating the number of factors,
Chemom. Intel. Lab. Syst., 48, 91–97.

Irwin, J. S. (1979), Scheme for estimating dispersion parameters as a func-
tion of release height, Publ. EPA-600/4-79-062, U.S. Environ. Prot.
Agency, Washington, D. C.

Kidwell, C. B., and J. M. Ondov (2001), Development and evaluation of a
prototype system for collecting sub-hourly ambient aerosol for chemical
analysis, Aerosol Sci. Technol., 35, 596–601.

Kidwell, C. B., and J. M. Ondov (2004), Elemental analysis of sub-hourly
ambient aerosol collections, Aerosol Sci. Technol., 38, 205–218.

Kim, B. M., and R. C. Henry (2000), Application of the SAFER model to
Los Angeles PM10 data, Atmos. Environ., 34, 1747–1759.

Kumar, A., J. Luo, and G. Bennett (1993), Statistical evaluation of lower
flammability distance (LFD) using four hazardous release models,
Process Safety Prog., 12, 1–11.

Kumar, A., N. K. Bellam, and A. Sud (1999), Performance of an industrial
source complex model: Predicting long-term concentrations in an urban
area, Environ. Prog., 18, 93–100.

Lioy, P. J., M. P. Zelenka, M. D. Cheng, N. M. Reiss, and W. E. Wilson
(1989), The effect of sampling duration of the ability to resolve source
types using factor analysis, Atmos. Environ., 23, 239–254.

Londergan, R. J., and D. J. Wackter (1984), Evaluation of complex terrain
air quality simulation models, Publ. EPA-450-4-84-017, U.S. Environ.
Prot. Agency, Research Triangle Park, N. C.

Londergan, R. J., D. H. Minott, D. J. Wackter, and R. R. Fizz (1983),
Evaluation of urban air quality simulation models, Publ. EPA-450-4-
83-020, U.S. Environ. Prot. Agency, Research Triangle Park, N. C.

Ondov, J. M., R. C. Ragaini, and A. H. Biermann (1979), Elemental
emissions from a coal-fired power plant: Comparison of a Venturi
wet scrubber system with a cold-side electrostatic precipitator, Environ.
Sci. Technol., 13, 598–607.

Ondov, J. M., C. E. Choquette, W. H. Zoller, G. E. Gordon, A. H.
Biermann, and R. E. Heft (1989), Atmospheric behavior of trace
elements on particles emitted from a coal-fired power plant, Atmos.
Environ., 23, 2193–2204.

Ondov, J. M., W. R. Kelly, J. Z. Holland, Z. Lin, and S. A. Wight (1992),
Tracing fly ash emitted from a coal-fired power plant with enriched rare-
earth isotopes, Atmos. Environ., Part B, 26, 453–462.

Ondov, J. M., J. P. Pancras, S. Gazula, M. Yu, J. Turner, A. Robinson,
S. Pandis, N. D. Poor, and R. K. Stevens (2003), Highly time-resolved
measurements of elemental composition at the Baltimore, St. Louis, Pitts-
burgh, and Tampa Supersites using the UM high-frequency aerosol slurry
sampler: Unprecedented resolution of the sources of primary atmospheric
aerosol, paper presented at 2003 PM AAAR Meeting, Am. Assoc. for
Aerosol Res., Pittsburgh, Pa., 31 March to 4 April.

Paatero, P. (1997), Least square formulation of robust non-negative factor
analysis, Chemom. Intel. Lab. Syst., 37, 23–35.

Paatero, P. (1999), The multilinear engine: A table-driven, least squares
program for solving multilinear problems, including the n-way parallel
factor analysis model, J. Comput. Graph. Stat., 8, 854–888.

Pancras, J. P. (2005), Multielement electrothermal AAS determination of
eleven marker elements in fine ambient aerosol slurry samples collected
with SEAS-II, Anal. Chim. Acta., in press.

Panofsky, H. A., A. K. Blackadar, and G. E. McVehil (1960), The diabatic
wind profile, Q. J. R. Meteorol. Soc., 86, 390–398.

Pasquill, F. (1961), The estimation of the dispersion of windborne material,
Meteorol. Mag., 90, 33–49.

Patel, V. C., and A. Kumar (1998), Evaluation of three air dispersion
models: ISCT2, ISCLT2, and SCREEN2 for mercury emissions in an
urban area, Environ. Monit. Assess., 53, 259–277.

Poor, N., C. Amalfilano, J. Ondov, P. Pancras, S. Gazula, P. Dasgupta, and
R. Al-Horr (2003), Real-time monitoring of gases and aerosols reveals
source contributions, paper presented at NARSTO Workshop on Innova-
tive Methods for Emission-Inventory Development and Evaluation,
NARSTO, Austin, Tex., 14–17 Oct.

Rheingrover, S. W., and G. E. Gordon (1988), Wind-trajectory method for
determining compositions of particles from major air pollution sources,
Aerosol Sci. Technol., 8, 29–61.

Schwede, D. B., and J. O. Paumier (1987), Sensitivity of the industrial
source complex model to input deposition parameters, J. Appl. Meteorol.,
36, 1096–1106.

Scire, J. S., R. R. Francoise, M. E. Fernau, and R. J. Yamartino (2000), A
User’s Guide for the CALMET Meteorological Model (Version 5), Earth
Tech, Inc., Concord, Mass.

Thurston, G. D., and J. D. Spengler (1985), A quantitative assessment of
source contributions to inhalable particulate matter pollution in metropo-
litan Boston, Atmos. Environ., 19, 9–25.

U.S. Environmental Protection Agency (U.S. EPA) (1980), Guidelines
on air quality models, OAQPS Guideline Ser., Research Triangle
Park, N. C.

U.S. Environmental Protection Agency (U.S. EPA) (1995), User’s Guide
for the Industrial Source Complex (ISC3) Dispersion Models, vol. II,
Description of Model Algorithms, Research Triangle Park, N. C.

Wahlin, P. (2003), COPREM: A multivariate receptor model with a physical
approach, Atmos. Environ., 37, 4861–4867.

Yamartino, R. J. (1982), Formulation and application of a hybrid receptor
model, paper presented at Specialty Conference on Receptor Models
Applied to Contemporary Pollution Problems, Northeast Atl. Int. Sect.
of the Air Pollut. Control Assoc., Danvers, Mass., 17–20 Oct.

�����������������������
J. Ondov and J. P. Pancras, Department of Chemistry and Biochemistry,

University of Maryland, College Park, Chemistry Building 91, College
Park, MD 20742, USA. ( jondov@umd.edu)
S. S. Park, Department of Environmental Engineering, Chonnam

National University, 300 Yongbong-dong, Buk-ku, Gwangju 500-757,
Korea.
N. Poor, Department of Environmental and Occupational Health, College

of Public Health, University of South Florida, Tampa, FL 33612, USA.

D07S15 PARK ET AL.: NEW MODEL FOR SOURCE APPORTIONMENT

14 of 14

D07S15



Figure 1. Area map showing the Sydney sampling site and nearby air emission sources.
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